문제)(1) F = ▽f가 되는 f를 구하고,(2) (1)의 결과를 이용해 주어진 곡선 C 위에서 선적분 ∫ F·dr을 계산하여라F(x,y) = C : (4,-2) ~ (1,1)까지 쌍곡선 x=y^2위의 호이다.풀이)(1)F(x,y) = 이고, 만약 F = ∇f이면, d(f(x,y))/dx = 2x, d(f(x,y))/dy = 4y이다.그러면 d(f(x,y))/dx = 2x은 f(x,y) = x^2 + K임을,d(f(x,y))/dy = 4y는 f(x,y) = 2y^2 + L임을 나타낸다.이 두가지를 합치면, f(x,y) = x^2 + 2y^2 + A (A는 상수) (2)C는 smooth curve이고, 시작점은 (4,−2), 종점은 (1,1)이므로, 따라서 답은 -21이다.