문제)
A 30-turn circular coil of radius 4.00cm and resistance 1.00Ω is placed in a magnetic field directed perpendicular to the plane of the coil.
The magnitude of the magnetic field is B = 0.0100t + 0.0400t^2 (T)
Calculating the induced emf in the coil at t = 5.00s
풀이)
induced emf ε = -N × dΦ / dt임을 이용한다.
N = 30
radius of coil = 4.00cm = 4.00 × 10^-2 m
resistance of coil = 1.00 Ω
magnetic field B = 0.0100t + 0.0400t^2 (T)
time t = 5.00 s
Area (A) = (4.00 × 10^-2 m) × (4.00 × 10^-2 m) × π = 0.0016π m^2
Φ = ∫ B dA
dΦ / dt = A × dB / dt = A × (0.0100 + 0.0800t) = (0.0016π m^2) × (0.0100 + 0.0800t)
At t = 5.00 s
dΦ / dt = A × dB / dt = (0.0016π m^2) × (0.0100 + 0.0800 × 5.00) = 2.06 × 10^-3
ε = -N × dΦ / dt = -30 × 2.06 × 10^-3 = -61.8 × 10^-3 V
그러나 magnetic field의 direction이 perpendicular to the plane of the coil이므로, -를 곱해서
답은 61.8 × 10^-3 V이다.
'일반물리학 > 예제' 카테고리의 다른 글
Calculating electric field at the point p2 (0) | 2024.11.14 |
---|---|
Calculating applied force, and energy rate. (1) | 2024.11.13 |
Calculating magnetic flux, induced emf, direction of induced current (0) | 2024.11.13 |
구부러진 도선과 한 점에서 전위(electric potential)를 찾기 (0) | 2024.11.11 |
7.00μC인 전하에 가해지는 총 전기력의 크기 (0) | 2024.11.10 |